

MarketShare Big Data Analytics

An Big Data Analytics architecture for the cloud

© 2011 MarketShare. All Rights Reserved. Confidential & Proprietary

MarketShare: Modeling on Big Data

- Cloud architecture evolution
- Equations Compiler
- Distributed modeling on the cloud

* Source: Interbrand 2011 report

MarketShare confidential and proprietary

Traditional 3 tier architecture

Eliminate accessibility restrictions

Compute Elasticity

MarketShare.

On demand hadoop instances

Network Elasticity

Defining the Cloud

Cloud = Managed Storage + Network Elasticity + On Demand Compute

The Technology Puzzle

MarketShare confidential and proprietary

Modeling Process

Modeling Objective: Find the best function:

Ticket Demand = F(time. event. team. GQV. economics. etc.)

An Equation

Dependent Variable: LOG(FULL_REV) Method: Panel EGLS (Cross-section weights) Date: 12/02/10 Time: 23:20 Sample: 1/15/2005 4/24/2010 IF PRODUCT="ACR" Periods included: 276 Cross-sections included: 2 Total panel (balanced) observations: 552 Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
с	1.928059	0.581194	3.317407	0.0010
LOG(FULL_REV(-1))	0.435265	0.031105	13.99354	0.0000
D_JULY1407	-0.972718	0.123655	-7.866387	0.0000
NVER_ACR89S	0.088231	0.018782	4.697745	0.0000
NVER_ACR89W(5)	-0.539195	0.089515	-6.023482	0.0000
NVER_ACR89W(4)	-0.361140	0.090928	-3.971722	0.0001
NVER_ACR89W	0.374661	0.089790	4.172631	0.0000
NVER_ACR89W(-1)	-0.294214	0.092878	-3.167755	0.0016
M01	0.132766	0.031783	4.177300	0.0000
M02	-0.007974	0.029042	-0.274556	0.7838
M03	0.074205	0.029115	2.548652	0.0111
M04	-0.009924	0.029221	-0.339623	0.7343
M05	0.006072	0.030147	0.201425	0.8404
M06	-0.031082	0.033140	-0.937899	0.3487
M08	-0.027964	0.030574	-0.914643	0.3608
M09	-0.048330	0.029858	-1.618646	0.1061
M10	-0.019334	0.030224	-0.639684	0.5227
M11	0.128423	0.035376	3.630205	0.0003
M12	-0.043087	0.033052	-1.303608	0.1929
H_CHRISMAS	-0.417512	0.064325	-6.490661	0.0000
H_USTHANKS	-0.465110	0.073687	-6.311968	0.0000
H_MLKING	-0.136058	0.065313	-2.083173	0.0377
H_VET_REM	-0.152138	0.066112	-2.301234	0.0218
H_GOODFRI	-0.190309	0.091691	-2.075553	0.0384
LOG(O_STRONGFV+O_SLIGHTFV+1)	0.027277	0.009282	2.938598	0.0034
LOG(DISP_SPEND(-3)+1)	0.005074	0.002074	2.446742	0.0147
LOG(EMAIL_DIRE(-4)+1)	0.004605	0.003108	1.481605	0.1391
LOG(CLICK_GOOG(-1)+1)	0.008355	0.002984	2.799882	0.0053
LOG(TRIALS_QUN+1)	0.115813	0.020992	5.516966	0.0000
LOG(AVG_EXRATE)	1.120003	0.216736	5.167590	0.0000
LOG(CLOSESTOCK+1)	0.386930	0.063674	6.076777	0.0000

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	1.795063	0.606433	2.960034	0.0032
C(2)	0.411358	0.031245	13.16558	0.0000
C(3)	-0.998070	0.133955	-7.450769	0.0000
C(4)	0.086044	0.020100	4.280843	0.0000
C(5)	-0.606070	0.096889	-6.255279	0.0000
C(6)	-0.406790	0.098392	-4.134375	0.0000
C(7)	0.353382	0.097319	3.631175	0.0003
C(8)	-0.286982	0.100499	-2.855556	0.0045
C(9)	0.144991	0.034232	4.235475	0.0000
C(10)	-0.010716	0.031422	-0.341032	0.7332
C(11)	0.082793	0.031695	2.612185	0.0093
C(12)	-0.017799	0.031659	-0.562192	0.5742
C(13)	0.009877	0.032654	0.302482	0.7624
C(14)	-0.021096	0.035899	-0.587657	0.5570
C(15)	-0.037336	0.033121	-1.127258	0.2602
C(16)	-0.051434	0.032318	-1.591502	0.1121
C(17)	-0.018745	0.032728	-0.572732	0.5671
C(18)	0.130375	0.037506	3.476104	0.0006
C(19)	-0.057581	0.035689	-1.613407	0.1073
C(20)	-0.454027	0.069646	-6.519041	0.0000
C(21)	-0.461600	0.090634	-5.093014	0.0000
C(22)	-0.173996	0.075795	-2.295609	0.0221
C(23)	-0.152578	0.070989	-2.149320	0.0321
C(24)	-0.210900	0.086137	-2.448408	0.0147
C(25)	0.029704	0.010043	2.957655	0.0032
C(26)	0.004821	0.002251	2.141985	0.0327
C(27)	0.004250	0.003372	1.260550	0.2080
C(28)	0.007673	0.003230	2.375561	0.0179
C(29)	0.141108	0.022728	6.208503	0.0000
C(30)	1.043132	0.206418	5.053500	0.0000
C(31)	0.394039	0.073700	5.346492	0.0000
C(32)	-0.494569	0.738763	-0.669456	0.5035
Determinant residual covariance		0.032323		

Equation: LOG(FULL_REV) = C(1)*(PROD_COUNTRY="ACR_US") + C(2) *LOG(FULL_REV(-1)) + C(3)*D_JULY1407 + C(4)*NVER_ACR89S + C(5)*NVER_ACR89W(5) + C(6)*NVER_ACR89W(4) + C(7) *NVER_ACR89W + C(8)*NVER_ACR89W(-1) + C(9)*M01 + C(10)*M02 + C(11)*M03 + C(12)*M04 + C(13)*M05 + C(14)*M06 + C(15)*M08 + C(16)*M09 + C(17)*M10 + C(18)*M11 + C(19)*M12 + C(20) *H_CHRISMAS + C(21)*H_USTHANKS + C(22)*H_MLKING + C(23) *H_VET_REM + C(24)*H_GOODERI + C(25)*LOG(0_STRONGEV

System of Equations = DMA

DMA Boundary Map

System of Equations = DMA x Product

DMA Boundary Map

DV:DLOG(GQV BRND CRD) Date: 10/12/10 Time: 04:21 SAMPLE : 1/07/2007 4/25/2010 IF X_PID_KEEP AND X_ACTIVE=""Sales PERIODS: 166 C SECTION: 45 **OBSERVATION**:7470 C,-0.001662,0.003390,-0.490416 DLOG(DM_ACQ_PH_QP(-2)+1),0.003098,0.002026,1.529200 DLOG(MC2 OOH CITI SPD(-4)+1),0.009889,0.003011,3.284126 DLOG(MC2_TV_CITI_GRP(-4)+(MC2_TV_CITI_GRP(-4)=0)),0.003607,0.002298,1.569751 HOL_LABOR(1),-0.111736,0.066085,-1.690803 HOL THANKS, 0.079682, 0.022311, 3.5713 98 AR(1),-0.367022,0.077109,-4.759810 R-squared, 0.224122 Adjusted R-squared, 0.218893 F-statistic,42.86145 Durbin-Watson stat, 2.058506 Prob(F-statistic),0.000000

System of Equations = Product x DMA x Media Channels

Purchase Paths are complex

Equation Compiler maintains a System of Equations

Anatomy of an Equation

Traditional Data Preparation

Data Transformations

Traditional Modeling architecture

Eliminate accessibility restrictions

Moving modeling to the cloud

MarketShare confidential and proprietary

Underlying architecture

Distributed data flow enables unlimited scalability

- 1. User creates/refreshes a scenario
- 2. Application server creates a request and queues it with the messaging server
- 3. Math Slave reads the response
- 4. Math Slave calls Math Program programs and process the input and output
- 5. Math Slave queues response back with zookeeper
- 6. Application Server picks response and responds backs to UI

The big picture

- Lots of challenges in cloud + modeling
- Collaboration opportunities
- We are hiring!