MarketShare Big Data Analytics

An Big Data Analytics architecture for the cloud

MarketShare: Modeling on Big Data

- Cloud architecture evolution
- Equations Compiler
- Distributed modeling on the cloud

Cloud + Big Data

Traditional 3 tier architecture

Eliminate accessibility restrictions

Moving to web based applications

MarketShare.4

Moving to the cloud

Moving big data to Hadoop

Compute Elasticity

Amazon EC2 On Demand Instances

Amazon Elastic MapReduce

On demand hadoop instances

MarketShare. 4

Storage Elasticity

MarketShare.4

Network Elasticity

Defining the Cloud

Cloud = Managed Storage + Network Elasticity + On Demand Compute

Cloud + Big Data + Modeling

The Technology Puzzle

MarketShare.4

Modeling Process

Modeling Objective: Find the best function:
Ticket Demand = F(time. event. team. GQV. economics. etc.)

Equations Compiler

MarketShare.4

An Equation

Dependent Variable: LOG(FULL_REV)

Method: Panel EGLS (Cross-section weights)
Date: 12/02/10 Time: 23:20
Sample: 1/15/2005 4/24/2010 IF PRODUCT="ACR"
Periods included: 276
Cross-sections included: 2
Total panel (balanced) observations: 552
Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
c	1.928059	0.581194	3.317407	0.0010
LOG(FULL_REV(-1))	0.435265	0.031105	13.99354	0.0000
D_JULY̌1407	-0.972718	0.123655	-7.866387	0.0000
NVER_ACR89	0.088231	0.018782	4.697745	0.0000
NVER_ACR89W(5)	-0.539195	0.089515	-6.023482	0.0000
NVER_ACR89W(4)	-0.361140	0.090928	-3.971722	0.0001
NVER_ACR89w	0.374661	0.089790	4.172631	0.0000
NVER_ACR89W(-1)	-0.294214	0.092878	-3.167755	0.0016
M01	0.132766	0.031783	4.177300	0.0000
M02	-0.007974	0.029042	-0.274556	0.7838
M03	0.074205	0.029115	2.548652	0.0111
M04	-0.009924	0.029221	-0.339623	0.7343
M05	0.006072	0.030147	0.201425	0.8404
M06	-0.031082	0.033140	-0.937899	0.3487
M08	-0.027964	0.030574	-0.914643	0.3608
M09	-0.048330	0.029858	-1.618646	0.1061
M10	-0.019334	0.030224	-0.639684	0.5227
M11	0.128423	0.035376	3.630205	0.0003
M12	-0.043087	0.033052	-1.303608	0.1929
H_CHRISMAS	-0.417512	0.064325	-6.490661	0.0000
H_USTHANKS	-0.465110	0.073687	-6.311968	0.0000
H_MLKING	-0.136058	0.065313	-2.083173	0.0377
H_VET_REM	-0.152138	0.066112	-2.301234	0.0218
H_GOODFRI	-0.190309	0.091691	-2.075553	0.0384
LOG(O_STRONGFV+O_SLIGHTFV+1)	0.027277	0.009282	2.938598	0.0034
LOG(DISP_SPEND $(-3)+1)$	0.005074	0.002074	2.446742	0.0147
LOG(EMAIL_DIRE (-4)+1)	0.004605	0.003108	1.481605	0.1391
LOG(CLICK_GOOG(-1)+1)	0.008355	0.002984	2.799882	0.0053
LOG(TRIALS_QUN+1)	0.115813	0.020992	5.516966	0.0000
LOG(AVG_EXRATE)	1.120003	0.216736	5.167590	0.0000
LOG(CLOSESTOCK+1)	0.386930	0.063674	6.076777	0.0000

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	1.795063	0.606433	2.960034	0.0032
C(2)	0.411358	0.031245	13.16558	0.0000
C(3)	-0.998070	0.133955	-7.450769	0.0000
C(4)	0.086044	0.020100	4.280843	0.0000
C(5)	-0.606070	0.096889	-6.255279	0.0000
C(6)	-0.406790	0.098392	-4.134375	0.0000
C(7)	0.353382	0.097319	3.631175	0.0003
C(8)	-0.286982	0.100499	-2.855556	0.0045
C(9)	0.144991	0.034232	4.235475	0.0000
C(10)	-0.010716	0.031422	-0.341032	0.7332
C(11)	0.082793	0.031695	2.612185	0.0093
C(12)	-0.017799	0.031659	-0.562192	0.5742
C(13)	0.009877	0.032654	0.302482	0.7624
C(14)	-0.021096	0.035899	-0.587657	0.5570
C(15)	-0.037336	0.033121	-1.127258	0.2602
C(16)	-0.051434	0.032318	-1.591502	0.1121
C(17)	-0.018745	0.032728	-0.572732	0.5671
C(18)	0.130375	0.037506	3.476104	0.0006
C(19)	-0.057581	0.035689	-1.613407	0.1073
C(20)	-0.454027	0.069646	-6.519041	0.0000
C(21)	-0.461600	0.090634	-5.093014	0.0000
C(22)	-0.173996	0.075795	-2.295609	0.0221
C(23)	-0.152578	0.070989	-2.149320	0.0321
C(24)	-0.210900	0.086137	-2.448408	0.0147
C(25)	0.029704	0.010043	2.957655	0.0032
C(26)	0.004821	0.002251	2.141985	0.0327
C(27)	0.004250	0.003372	1.260550	0.2080
C(28)	0.007673	0.003230	2.375561	0.0179
C(29)	0.141108	0.022728	6.208503	0.0000
C(30)	1.043132	0.206418	5.053500	0.0000
C(31)	0.394039	0.073700	5.346492	0.0000
C(32)	-0.494569	0.738763	-0.669456	0.5035

Determinant residual covariance
 0.032323

Equation: LOG(FULL_REV) $=C(1)^{*}\left(P R O D _C O U N T R Y=" A C R _U S "\right)+C(2)$ *LOG(FULL_REV(-1)) + C(3)*D_JULY1407 + C(4)*NVER_ACR89S + C(5)*NVER_ACR89W(5) + C(6)*NVER_ACR89W(4) + C(7)
*NVER_ACR89W + C(8)*NVER_ACR89W(-1) + C(9)*M01 + C(10)*M02
$+\mathrm{C}(11)^{\star} \mathrm{M} 03+\mathrm{C}(12) * \mathrm{M} 04+\mathrm{C}(13) * \mathrm{M} 05+\mathrm{C}(14)^{*} \mathrm{M} 06+\mathrm{C}(15) * \mathrm{M} 08+$
$C(16)^{\star} M 09+C(17)^{\star} M 10+C(18)^{*} M 11+C(19)^{\star} M 12+C(20)$
H_CHRISMAS $+\mathrm{C}(21)^{} \mathrm{H}$ _USTHANKS $+\mathrm{C}(22)^{*} \mathrm{H}$ _MLKING $+\mathrm{C}(23)$

System of Equations = DMA

DMA Boundary Map

System of Equations = DMA x Product

DMA Boundary Map

Product x DMA

DV : DLOG(GQV_BRND_CRD) Date: 10/12/10 Time: 04:21 SAMPLE : 1/07/2007 4/25/2010 IF X_PID_KEEP AND X_ACTIVE=""Sales PERIODS: 166
C_SECTION : 45
OBSERVATION:7470
C,-0.001662,0.003390,-0.490416
DLOG(DM_ACQ_PH_QP(-
2) +1), $, 0.003098,0.002026,1.529200$ DLOG(MC2_OOH_CITI_SPD(-
4)+1),0.009889,0.003011,3.284126 DLOG(MC2_TV_CITI_GRP(-
4)+(MC2_TV_CITI_GRP(-
4) $=0$) $), 0.003607,0.002298,1.569751$

HOL_LABOR(1),-0.111736,0.066085,
1.690803

HOL_THANKS,0.079682,0.022311,3.5713 98
AR(1),-0.367022,0.077109,-4.759810 R-squared, 0.224122
Adjusted R-squared, 0.218893
F-statistic,42.86145
Durbin-Watson stat, 2.058506
$\operatorname{Prob}(F-$ statistic), 0.000000

System of Equations $=$ Product \times DMA \times Media Channels

MarketShare.4

Purchase Paths are complex

MarketShare.4

Equation Compiler maintains a System of Equations

MarketShare.4

Anatomy of an Equation

Elastic Modeling

Traditional Data Preparation

Data Transformations

Traditional Modeling architecture

Eliminate accessibility restrictions

Distributed, Cloud based Modeling

Moving modeling to the cloud

MarketShare.4

Underlying architecture

Master Node
 뭄 amazon
 Configure 100s of Hypotheses

MarketShare confidential and proprietary

MarketShare.4

Distributed data flow enables unlimited scalability

1. User creates/refreshes a scenario
2. Application server creates a request and queues it with the messaging server
3. Math Slave reads the response
4. Math Slave calls Math Program programs and process the input and output
5. Math Slave queues response back with zookeeper
6. Application Server picks response and responds backs to UI

MarketShare. 4
The big picture

Next Steps

- Lots of challenges in cloud + modeling
- Collaboration opportunities
- We are hiring!

